
N U M E R I C A L  S O L U T I O N  O F  

O F  E X T E R N A L  R A D I A T I O N  

B.  N~ C h e t v e r u s h k i n  

S P E C T R A L  P R O B L E M  

H E A T I N G  O F  M A T T E R  

A method is p re sen ted  for  solving spec t r a l  p r o b l e m s  of rad ia t ion  in gas dynamics  if the 
p rob l em is independent of at  l eas t  one Car tes ian  coordinate .  The der ivat ion is given of the 
cor responding  ave raged  t r a n s p o r t  equation, and the domain of its appl icabi l i ty  is cons idered .  
Using this methods a numer i ca l  solution is obtained of the heat  spec t r a l  p rob l em of ex te rna l  
radia t ion heat  falling on mat te r .  By compar ing  it with a s i m i l a r  solution for  "gray"  ma t t e r ,  
the pa r t  p layed by spec t r a l  effects  [1] its i l lus t ra ted .  

1. Averaged  T r a n s p o r t  Equation. The radia t ion t r a n s p o r t  equation is cons idered  for a p lanar  l ayer ,  

dl~ 
- ~ -  + • = T • I,p (1.1) 

I+(rN, ~t, t ) =  l-(~t, t, v) (~t<O) 

with the boundary conditions 

I~(ro, bt, t ) = I + ( ~ , t , v )  (~>~0), 

In the above It denotes the cosine of the angle between the direct ion of the motion of a photon of f requen-  
cy v and the r axis;  ~ is the absorpt ion  coeff icient  in which the forced  emiss ion  has a l r eady  been taken 
into account; /vp is the equi l ibr ium radia t ion  intensity of a blackbody [2]. 

The radia t ion energy  flow W can be wri t ten  as 

W = f  dv ~I, dv (1.2) 
0 - - 1  

We shal l  a s s u m e  that  the absorp t ion  coeff icient  is given in the fo rm 

m' =/1  (v)/~ (T, p) (i.3) 

where  f t  and f2 can be a r b i t r a r y  functions.  If in (1.2) a change of va r i ab l e s  v = v, z =it / f t (v )  is c a r r i e d  out 
and the o rde r  of integrat ion inser ted ,  one obtains* 

W = ~ d v  i z / l* (v ) l vdz= i + z ldz  
0 - - a  - - a +  

(i.4) 

where  
a ' =  l / ] l (~) ,  a+=maxvl /] i (~ ' )  

I = S/i~ (v) Iv dv 

*The equality (1.4) is valid for  any func t ionf t (~ ,  T, p). 
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TABLE 1 

0.1 
0.3 
I 
2 
4 
8 

12 
16 

108 
3 703 700 

131660 
40 316 
18 569 
7 242 
5 329 
4 t97 

v~_ [5 , t2 ]  

5195 
5t95 
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2737 
t331 
1t37 
825 
344 

v~ [t2,36] 

376 
376 
376 
22t 
t30 
7O 
53 
39 

v ~  [36,72] 

14 
14 
14 
14 
10.4 
7.2 
5.9 
5.3 

v E  [72,i&~] 

t.74 
t.74 
1.74 
t.74 
1.74 
t .30 
1.02 
0.89 

1 1 

o.o~, o.go rn 

Fig. 1 

The integration is ca r r i ed  out over  the set  a ~ [zl. 

Multiplying Eq. (1.1) together with the corresponding boundary condi- 
tions byf2(v) and integrating over  the set ,~, we obtain the equation 

zdI/dr + ]~ (T, p) S = h F (T, I ~ I) / 2 (i.5) 

for  the function I and the boundary conditions 

I+(t,z)~-I/i~(v)I+(~,t,~)dv (z>~0) 
o) 

I-(t ,z)=f/i2(~)I-(~,t ,~)dv (z<0) 
o) 

(i.6) 

In the above, F(T, Izt ) is a monotonically decreas ing function of tz] 
which is given by the formula  

F(T, Iz l )  = f / i ~  (v) I~pdv (i.7) 

The flow W can be determined by solving Eq. (1.5) [1]: 

a+ 

W =  I zldz (1.8) 
- - a +  

In the case in wh ich f l (v  , T, p) is a slowly varying function of T, p of the order  of the length of free 
motion, one can ignore the t e rm containing the derivative o f f i  with respec t  to r obtained by multiplying 
Eq. (1.1) b y f  2. The corresponding averaged equation for I is writ ten in the form {1.5). The boundary con-  
ditions and the r ight-hand sides of this equation can be determined f rom (1.6) and (1.7) with f l  =ft(v, T, p). 
The equality (1.8) becomes now an approximate one. 

Letf l(~ , T, p) be an a rb i t r a ry  function of ~, T, p. By formal ly  integrating the averaged equation (1.5) 
with respec t  to z between the l imits - a ~  --<z -< a~ where a~ = max 1 / f l  (~, T, p), the maximum being taken 
over v, T, p, one obtains 

dW' 
dr + /2U =/2B (r, p) (1.9) 

a ~' a+" cr 

w '  = I ~z d~, v = I r ~ ,  B (r ,  p) = I / l ( , ,  r ,  p) A~ d~ 
--a~_' - - a + '  0 

(i.lO) 

It follows f rom (1.9) and (1.10) that in the limiting case of an optically thin heated layer  dW' /d r  is equal 
to the divergence of the exact radiat ion flow dW/dr for any funct ionfl(v,  T, p). 

If the mat ter  is in an equilibrium state with radiation, then f l  (v, T, p), whatever its form,  must  be only 
a slightly changing function within the distances of the o rder  of the length of free motion. 
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Therefore ,  in the "limiting optical s ta tes"  of mat ter  (an optically thin heated layer  and an equilibrium 
case between matter  and radiation), the formal ly  obtained equation (1o5) for an a r b i t r a r y  fl yields resu l t s  
which are  identical with the exact resul ts .  It is noticed that the widely used diffusion approximation for 
solving the t ranspor t  equation in limiting optical s tates also gives r e su l t s  which are  identical with the exact 
resul ts .  In the case of "a rb i t r a ry  optical s ta tes"  a qualitatively co r r ec t  resu l t  is always obtained. By anal-  
ogy with diffusion approximation, it is to be expected that for an a rb i t r a ry  optical state of mat ter  with a rb i -  
t r a r y  f u n c t i o n f l ( u ,  T, p) the averaged equation (1.5) should also give a qualitatively co r r ec t  resul t .  

Equation {1.5) is of smal le r  dimensionality than (1.1). It i s ,moreover ,  writ ten in the form which is 
suitable for  applying the quasi-diffusion method. The lat ter  enables one to simplify considerably the com-  
putation of the flow W [3-5]. It should be mentioned that an averaged equation s imi lar  to (1.5) can also be 
obtained for  two--dimensional problems.  

Moreover ,  the proposed averaging can be automatical ly t r ans fe r r ed  to the case in which there is no 
local thermodynamic  equilibrium in matter .  To obtain the corresponding averaged equation it suffices to 
set  the absorption coefficient and the r ight-hand side of the t ranspor t  equation in the form 

• = ul (v) • (r, t), I '  (v, r, t) 

where ~ and I '  are  implicit  functions of r and t, The derivation of the averaged equation is s imi lar  to that 
of Eq. (1.5). 

2. Computation of the Heat Spectral Problem of External  Radiation Heating of Matter.  The problem 
is considered of heating an infinite planar layer  of matter  by external radiation. Problems of this kind ar i se  
in laser  radiation on mat ter  [6-9]. By assuming that the phase t ransi t ion has no essential  effect on the total 
p rocess  the sys tem of equations describing the motion of the vaporized mat ter  can be writ ten as 

dr 'du 0 (p -Jr o)') (?8 O~V '0 (ru) 
- ~  = u ,  9 dr = dm,  dt 3m ' Ot = Om P O ~  

e = e ( T , p ) ,  p = p ( T , p ) ,  •215 

dIv ~r l~P I 
T -~ ~v'I~ --  2 ' W ~ d~ ~[~ d~ 

0 ~1 

(2.1) 

(2.2) 

In the above m is the Lagrange coordinate,  u is velocity,  p is p r e s su re ,  w' is ar t i f icial  viscosi ty,  r is 
internal energy.  

The gas -dynamics  equations (2.1) are writ ten in Lagrange coordinates and the t ranspor t  equation (2.2) 
in Euler coordinates .  The boundary conditions for the gas -dynamics  equations are  p = 0 at the left end and 
u = 0 at the r ight end. For  t ranspor t  equations the boundary condition can be writ ten as 

at the left end Iv (ro (t), ~) : I + (9, t, v) 
at the right end [~(r~, 9) = 0 
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One takes  

r ( r ,  0 ) = u ( r ,  0), o ( r ,  0 ) = p ( r )  

82~ 

as initial  conditions for  gas -dynamics  equations.  

The numer ica l  solution of the s y s t e m  of equations (2.1) and 
(2.2) is by far  more  complex than the solving of the p rob lem in 
the approximat ion  of r ad ian t -hea t  conduction or  in the absence  
of r e - rad ia t ion ,when  the r igh t -hand  side of the t r a n s p o r t  equation 
is se t  as equal to zero .  To solve numer ica l ly  the s y s t e m  of equa-  
t ions (2.1) and (2.2) methods descr ibed  in [4, 5] can be used. 

A typical  p rob lem will now be cons idered  with the following 
boundary condition for  the t r a n s p o r t  equation: 

Fig. 4 i + =  fCe' v ~ [ 1 2 , 3 6  l 
to  �9 : ~ [t2, 36] 

and with the s ta te  equations close to the s ta te  equations of the ideal gas.  

The absorp t ion  coeff icient  is a s sumed  to be given by ~ =p~o(~, T) where  the values  of ~(v, T) a r e  
given in Table 1. 

In the table the columns were  obtained by Planck averaging  within the l imi t s  of the respec t ive  group 
for  the absorpt ion  coefficient ,  

hv 

Thus the coefficient  n '  (~, T, p) used in computat ions is a s imulat ion of the p rac t i ca l l y  impor tan t  ab-  
sorpt ion  coefficient  [2] 

(2.3) 

Fo r  this p rob lem a f ive -group  approximat ion  is considered as if it were  exact .  A compar i son  of an 
"exact"  solution and the solution obtained f r o m  the ave raged  equation shows a good quanti tat ive a g r e e m e n t  
in spite of the fact  that  n ' (~ ,  T, p) cannot be r e p r e s e n t e d  accura te ly  as a product  of functions of separab le  
va r i ab l e s .  

The r e su l t s  of the computat ions shown here  of the spec t r a l  p rob l em were  obtained by using the ave raged  
equation (1.5). The solution of this p rob lem was also obtained in a one-group approximat ion  of the g ray  
ma t t e r  when the absorpt ion  coeff icient  n~ had been obtained by Planck averaging  over  the en t i re  spec t rum.  

It can be seen f rom the calculat ions for  one-group and also for  the spec t r a l  modification that  at  the 
beginning a substant ia l  p a r t  of the s y s t e m - a b s o r b e d  radia t ion energy is used to inc rease  the  internal  energy  
of the ma t t e r .  Subsequently, the share  of the kinetic energy  i nc r ea se s ,  the re  begins an intensive sca t te r ing  
of the ma t t e r ,  and a compres s ion  shock wave is fo rmed  in f ront  of the heat wave through undisturbed ma t t e r .  
F igure  i shows cha rac t e r i s t i c  t e m p e r a t u r e  prof i les  for  this s tate  calcula ted in one-group T 1 and in the spec -  
t r a l  T 2 var ian t .  

In the one-group  va r i an t  the d i spers ion  of ma t t e r  and the forming of the shock wave begins much 
e a r l i e r  than in the spec t r a l  case .  There  is a s imple  explanation for  the la t te r .  The cha rac t e r i s t i c  t ime  7 
in which the fo rming  of the shock wave takes  p lace  can be de te rmined  f r o m  the re la t ion  

T = l ] D (2.4) 

where  l is the dimension of the heated region and D is the dis turbance t r a n s p o r t  veloci ty .  So f a r  as the o rde r  
of quanti t ies  is concerned,  l is equal to the cha r ac t e r i s t i c  length of f r ee  motion,which for  the spec t r a l  v a r i -  
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ant r epresen t s  the length of free motion of quanta of the frequency v E[12, 36]. This length of free motion 
exceeds considerably the length of free motion for  a one-group variant .  

For  the reg ime thus formed (Fig. 1), the mat ter  near  the boundary in the spectra l  variant ,  unlike the 
one-group variant ,  is not in a state of equilibrium with radiation. This is always observed if the radiat ion 
is given in a narrow spect ra l  interval and cannot be interpreted as blackbody radiat ion at some tempera tu re  

To. 

In contras t  to the one-group variant ,  the front of the heat wave is more  hollow in the spect ra l  variant .  
One observes  the so-ca l led  "tongue" of the heat (Fig. 1). To est imate  the role of different quanta in the 
heating of frontal  regions,  the values of flows are  represen ted  in Fig. 2 according to groups.  It can be seen 
f rom the diagram that the fundamental role as r ega rds  the heating function is played by the quanta of the 
fourth group v~ [36, 72]; however,  in the heating of distant and cool layers  an important  role  is also played 
by the quanta of the fifth group v ~ [72, 144]. It should be mentioned that hard quanta v ~ [36, 144] a re  gen-  
erated direct ly  in the hot region.  

In the course  of t ime the radiat ion flow falling on the body increases ,  W+ = vCe t. This leads to an in- 
c rease  in the tempera ture  of the heated zone and consequently to a g rea te r  share  of the hard-quanta r ad i a -  
tion. In Fig. 3, the values of flows are  shown according to groups emanating f rom the body at the instant t. 
With the r i se  in power of the radiation there  is a g rea te r  share  of radiat ion f rom the fourth and the fifth 
group. There is hardly any radiation in the f i r s t  group. It is to be expected that with reduction in the power 
of radiation, say for example, by W+ = ~Ce -t ,  the share  of radiation of the f i rs t  and the second group is on 
the increase .  Thus, by varying only the power of the falling radiat ion without modifying its f requency cha r -  
ac te r i s t i cs  a considerable change in the spect ra l  constitution of the outgoing radiation can be obtained. 

In Fig. 4, the values a re  shown of the energy put in the sys tem for the one-group var iant  E 1 and for 
the spect ra l  var iant  E 2 . The values are  also shown of the internal energy e and the kinetic energy ev for  
these var iants .  It can be seen f rom Fig. 4 that e and e v are  a lmost  the same for  the spect ra l  variant;  their  
relat ionship changes, however,  for  the one-group variant .  Thus, the conclusions reached in [6] as r ega rds  
the existence of an asymptot ic  ra t io  of e and e v are  confirmed by the example of calculating the spect ra l  
problem together with re - rad ia t ion .  

Let us consider  a rapidly increasing external  radiat ion flow, 

t+-~ t 

S z+e >Sz+e' 
0 0 

(2.5) 

where r is the charac te r i s t i c  time of d ispers ion in gas.  In this case there  is no t ime for  the mat ter  to be 
set in motion and the share  of the kinetic energy should be small .  It follows f rom the inequality (2.5) that 
the reduced share  of the kinetic energy may also be due to an increase  in the charac te r i s t i c  d ispers ion t ime 
~. In turn, r can be determined f rom the equality (2.4). When the charac te r i s t i c  length of f ree  motion in- 
c r ea ses  as in the case of proceeding f rom the one-group var iant  to the spect ra l  one, the dispers ion t ime r 
also increases .  An increasing r leads to a la rger  share  of the internal energy; the latter is confirmed by 
calculations (Fig. 4). 

One should mention here that for some c lasses  of heat problems by radiat ion on mat ter  the analysis  
of dimensionality and s imi lar i ty  permi t s  one to select  dimensionless  combinations of dimensional p a r a m -  
e ters  which determine the solution of the sys tem of equations (2.1) and (2.2). This, in turn,  enables one to 
reduce considerably the number of independent p a r a m e t e r s  which exer t  an influence on the solution. 

In conclusion, the author would like to express  his thanks to V. Ya. Gol'din for showing great  in teres t  
in this work and for discussing the resul ts ,  and to D.A. Gol'dina for her help in prepar ing  the numer ica l  
calculations~ 
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