NUMERICAL SOLUTION OF SPECTRAL PROBLEM
OF EXTERNAL RADIATION HEATING OF MATTER

B. N. Chetverushkin

A method is presented for solving spectral problems of radiation in gas dynamiecs if the
problem is independent of at least one Cartesian coordinate. The derivation is given of the
corresponding averaged transport equation, and the domain of its applicability is considered.
Using this methods a numerical solution is obtained of the heat spectral problem of external
radiation heat falling on matter. By comparing it with a similar solution for "gray" matter,
the part played by spectral effects [1] its illustrated.

1. Averaged Transport Equation. The radiation transport equation is considered for a planar layer,

dI, , ®,
K + %/, = _QLIVP (1.1)

with the boundary conditions
I(ro, ) =I" (R, £, %) @>0, Llry,m ) =I"(R 2, V) @<0)

In the above u denotes the cosine of the angle between the direction of the motion of a photon of frequen-
cy v and the r axis; n{ is the absorption coefficient in which the forced emission has already been taken
into account; I,j is the equilibrium radiation intensity of a blackbody [2].

The radiation energy flow W can be written as

1
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We shall assume that the absorption coefficient is given in the form
Hy =f1 (V) fz (T7 p) (1.3)

where 74 and f, can be arbitrary functions. If in (1.2) a change of variables y =y, z =/.¢/f1(y) is carried out
and the order of integration inserted, one obtaing*
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v\ afpwLdi= { ardz (1.4)
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where
a=1/f(v), a,=max,1/f(v)
I={1@ldv.

w

*The equality (1.4) is valid for any function (v, T, p).
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TABLE 1

T ve[0,5] ve [5,12] ve [12,36] ve [36,72] | ves [72,144]

0.1 108 5195 376 14 1.74

0.3 3703 700 5195 376 14 1.74

1 131 660 3000 376 14 1.74

2 40316 2731 221 14 1.74

4 18 569 1331 130 10.4 1.74

8 7242 4137 70 7.2 1.30
12 5329 825 53 5.9 1.02
16 4497 344 39 5.3 0.89

The integration is carried out over the seta = |z].

’ Nz Multiplying Eq. (1.1) together with the corresponding boundary condi-
z T, \ P tions by f%(u) and integrating over the set w,we obtain the equation

\\ zdljdr + f, (T, p) I =, F (T, |2) ]2 (1.5)
8

N\ for the function I and the boundary conditions
¥
4 \ I o) =\ ROIF@ Ly >0 (1.6)
7 I =\ftW e vidv @<

g 204 o0 m

In the above, F(T, |z|) is a monotonically decreasing function of |z |
which is given by the formula

F(T, |z = 12 (v) Lpv L7

The flow W can be determined by solving Eq. (1.5) [1]:

ai
W=\ sl (1.8)

—ay

In the case in which 7y (v, T, p) is a slowly varying function of T, p of the order of the length of free
motion, one can ignore the term containing the derivative of r; with respect to r obtained by multiplying
Eq. (1.1) by f%. The corresponding averaged equation for Iis written in the form (1.5). The boundary con-
ditions and the right-hand sides of this equation can be determined from (1.6) and (1.7) with f1=f1lv, T, p).
The equality (1.8) becomes now an approximate one.

Let fyv, T, p) be an arbitrary function of v, T, p. By formally integrating the averaged equation (1.5)
with respect to z between the limits —a} =z =a} where al=max 1/f;(v, T, p), the maximum being taken
overy, T, p, one obtains

WI
dd’. +f2U=f2B(T’ P) (1.9)
ay’ ay’ o
W= _§+, Ids, U= _§+’Idz, B(T, p) =§ fo v, T, ) Lo dv 1.10)

It follows from (1.9) and (1.10) that in the limiting case of an optically thin heated layer dW'/dr is equal
to the divergence of the exact radiation flow dW/dr for any function fiv, T, p).

If the matter is in an equilibrium state with radiation, then 74 (v, T, p), whatever its form, must be only
a slightly changing function within the distances of the order of the length of free motion.
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Therefore, in the "limiting optical states™ of matter (an optically thin heated layer and an equilibrium
case between matter and radiation), the formally obtained equation (1.5) for an arbitrary r; yields results
which are identical with the exact results. It is noticed that the widely used diffusion approximation for
solving the transport equation in limiting optical states also gives results which are identical with the exact
results. In the case of Marbitrary optical states™ a qualitatively correct result is always obtained. By anal-
ogy with diffusion approximation, it is to be expected that for an arbitrary optical state of matter with arbi-
trary function 7y (v, T, p) the averaged equation (1.5) should also give a qualitatively correct result.

Equation (1.5) is of smaller dimensionality than (1.1). It is,moreover, written in the form which is
suitable for applying the quasi~diffusion method. The latter enables one to simplify considerably the com-
putation of the flow W [3-5]. It should be mentioned that an averaged equation similar to (1.5) can also be
obtained for two-dimensional problems.

Moreover, the proposed averaging can be automatically transferred to the case in which there is no
local thermodynamic equilibrium in matter. To obtain the corresponding averaged equation it suffices to
set the absorption coefficient and the right-hand side of the transport equation in the form

w=u% V%, ), I'(v,r?i

where » and I' are implicit functions of r and t. The derivation of the averaged equation is similar to that
of Eq. (1.5).

2. Computation of the Heat Spectral Problem of External Radiation Heating of Matter. The problem
is considered of heating an infinite planar layer of matter by external radiation. Problems of this kind arise
in laser radiation on matter [6-9]. By assuming that the phase transition has no essential effect on the total
process the system of equations describing the motion of the vaporized matter can be written as

. 2.1)
d » "du dpt+w) d8 W 9 (ru)
d—::u, pdr =dm, r’ i am Cw T " om T P Tom
“3:5(7”9)’ p=p(T,p), x\*’:%’(vaip)
oo 1
dal, _— %, Ly .
b+l = W—§ dv§1ufvdu o

In the above m is the Lagrange coordinate, u is velocity, p is pressure, ' is artificial viscosity, ¢ is
internal energy.

The gas-dynamics equations (2.1) are written in Lagrange coordinates and the transport equation (2.2)
in Euler coordinates. The boundary conditions for the gas-dynamics equations are p =0 at the left end and
u=0 at the right end. For transport equations the boundary condition can be written as

at the left end I, (ro (©), p) = It (u, 2, v)
at the right end I, (reo, p) = 0
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T(r, 0)=u(r, 0), p(r, 0)=0p()
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£ / as initial conditions for gas-dynamics equations.
o

/ The numerical solution of the system of equations (2.1) and
¢ / L Kt: T (2.2) is by far more complex than the solving of the problem in
/ ‘// the approximation of radiant-heat conduction or in the absence
L / i/ //f <.)f re-radiation,when the right-hand 51de'of the transport equation
* LAt " ~ is set as equal to zero, To solve numerically the system of equa-
/”/ tions (2.1) and (2.2) methods described in [4, 5] can be used,
A typical problem will now be considered with the following
0%z 007 27 i T2t boundary condition for the transport equation:
Fig. 4 I {Ce‘ ve (12, 36)
Tl o v 12, 36]

and with the state equations close to the state equations of the ideal gas.

The absorption coefficient is assumed to be given by %, =p@(v, T) where the values of ¢(v, T) are
given in Table 1,

In the table the columns were obtained by Planck averaging within the limits of the respective group
for the absorption coefficient,

104 — hv
'X,('V, T, p) =W(1—exp—%r)

Thus the coefficient n' (v, T, p) used in computations is a simulation of the practically important ab-
sorption coefficient [2]

B —hv
VS iy
w =il (1 = exe 57) (2.3)

For this problem a five-group approximation is considered as if it were exact. A comparison of an
"exact" solution and the solution obtdained from the averaged equation shows a good quantitative agreement
in spite of the fact that n'(v, T, p) cannot be represented accurately as a product of functions of separable
variables,

The results of the computations shown here of the spectral problem were obtained by using the averaged
equation (1.5). The solution of this problem was also obtained in a one-group approximation of the gray
matter when the absorption coefficient »], had been obtained by Planck averaging over the entire spectrum.

It can be seen from the calculations for one-group and also for the spectral modification that at the
beginning a substantial part of the system-absorbed radiation energy is used fo increase the internal energy
of the matter. Subsequently, the share of the kinetic energy increases, there begins an intensive scattering
of the matter, and a conipression shock wave is formed in front of the heat wave through undisturbed matter.
Figure 1 shows characteristic temperature profiles for this state calculated in one-group T, and in the spec-
tral T, variant.

In the one-group variant the dispersion of matter and the forming of the shock wave begins much
earlier than in the spectral case. There is a simple explanation for the latter. The characteristic time 7
in which the forming of the shock wave takes place can be determined from the relation

t=1]D 2.4)

where [ is the dimension of the heated region and D is the disturbance transport velocity. So far as the order
of quantities is concerned, I is equal to the characteristic length of free motion,which for the spectral vari-
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ant represents the length of free motion of quanta of the frequency v <[12, 36]. This length of free motion
exceeds considerably the length of free motion for a one-group variant.

For the regime thus formed (Fig. 1), the matter near the boundary in the spectral variant, unlike the
one-group variant, is not in a state of equilibrium with radiation. This is always observed if the radiation
is given in a narrow spectral interval and cannot be interpreted as blackbody radiation at some temperature
Ty-

In contrast to the one~-group variant, the front of the heat wave is more hollow in the spectral variant.
One observes the so-called "tongue" of the heat (Fig. 1). To estimate the role of different quanta in the
heating of frontal regions, the values of flows are represented in Fig. 2 according to groups. It can be seen
from the diagram that the fundamental role as regards the heating function is played by the quanta of the
fourth group ve [36, 72]; however, in the heating of distant and cool layers an important role is also played
by the quanta of the fifth group v ¢ [72, 144]. It should be mentioned that hard quanta v < [36, 144] are gen-
erated directly in the hot region.

In the course of time the radiation flow falling on the body increases, W, = 7Cet. This leads to an in-
crease in the temperature of the heated zone and consequently to a greater share of the hard-quanta radia-
tion. In Fig. 3, the values of flows are shown according to groups emanating from the body at the instant t.
With the rise in power of the radiation there is a greater share of radiation from the fourth and the fifth
group. There is hardly any radiation in the first group. It is to be expected that with reduction in the power
of radiation, say for example, by W_ = wCe't, the share of radiation of the first and the second group is on
the increase. Thus, by varying only the power of the falling radiation without modifying its frequency char-
acteristics a considerable change in the spectral constitution of the outgoing radiation can be obtained.

In Fig. 4, the values are shown of the energy put in the system for the one-group variant E; and for
the spectral variant E,. The values are also shown of the internal energy ¢ and the kinetic energy &y for
these variants. It can be seen from Fig. 4 that £ and ey are almost the same for the spectral variant; their
relationship changes, however, for the one-group variant. Thus, the conclusions reached in [6] as regards
the existence of an asymptotic ratio of & and &y are confirmed by the example of calculating the spectral
problem together with re-radiation.

Let us consider a rapidly increasing external radiation flow,

t-t t .
\ rrar>(rar (2.5)
[ 0

where 7 is the characteristic time of dispersion in gas. In this case there is no time for the matter to be
set in motion and the share of the kinetic energy should be small, It follows from the inequality (2.5) that
the reduced share of the kinetic energy may also be due to an increase in the characteristic dispersion time
7. In turn, 7 can be determined from the equality (2.4). When the characteristic length of free motion in~
creases as in the case of proceeding from the one-group variant to the spectral one, the dispersion time 7
also increases. An increasing 7 leads to a larger share of the internal energy;the latter is confirmed by
calculations (Fig. 4).

One should mention here that for some classes of heat problems by radiation on matter the analysis
of dimensionality and similarity permits one fo select dimensionless combinations of dimensional param-
eters which determine the solution of the system of equations (2.1) and (2.2). This, in turn, enables one to
reduce considerably the number of independent parameters which exert an influence on the solution.

In conclusion, the author would like to express his thanks to V. Ya. Gol'din for showing great interest
in this work and for discussing the results, and to D.A. Gol'dina for her help in preparing the numerieal
calculations.
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